Package index
-
set_api_key()
- Set your API keys so they can be accessed by EndpointR
-
get_api_key()
- Retrieve an API key which has been stored as an Environment Variable.
Hugging Face - Text Embeddings
Functions for generating text embeddings using Hugging Face endpoints
-
hf_embed_text()
- Generate embeddings for a single text
-
hf_embed_batch()
- Generate batches of embeddings for a list of texts
-
hf_embed_df()
- Generate embeddings for texts in a data frame
-
tidy_embedding_response()
- Process embedding API response into a tidy format
-
hf_classify_text()
- Classify text using a Hugging Face Inference API endpoint
-
hf_classify_batch()
- Classify multiple texts using Hugging Face Inference Endpoints
-
hf_classify_df()
- Classify a data frame of texts using Hugging Face Inference Endpoints
-
tidy_classification_response()
- Convert Hugging Face classification response to tidy format
Hugging Face - Core Infrastructure
Low-level functions for building and performing Hugging Face requests
-
hf_build_request()
- Prepare a single text embedding request
-
hf_build_request_batch()
- Prepare a batch request for multiple texts
-
hf_build_request_df()
- Prepare embedding requests for texts in a data frame
-
hf_perform_request()
- Execute a single embedding request and process the response
-
oai_build_completions_request()
- Build an OpenAI API Chat Completions request
-
oai_build_completions_request_list()
- Build OpenAI requests for batch processing
-
oai_complete_text()
- Generate a completion for a single text using OpenAI's Chat Completions API
-
oai_complete_chunks()
- Process text chunks through OpenAI's Chat Completions API with batch file output
-
oai_complete_df()
- Process a data frame through OpenAI's Chat Completions API with chunked processing
-
oai_build_embedding_request()
- Build OpenAI embedding API request
-
oai_embed_text()
- Generate embeddings for a single text using OpenAI
-
oai_embed_batch()
- Generate embeddings for multiple texts using OpenAI
-
oai_embed_df()
- Generate embeddings for texts in a data frame using OpenAI
-
tidy_oai_embedding()
- Process OpenAI embedding API response into a tidy format
JSON Schema for Structured Outputs
Type-safe schema creation and validation for structured LLM outputs
-
create_json_schema()
- Create a JSON Schema object
-
json_schema()
- Create JSON Schema S7 class for structured outputs
-
json_dump
- Convert json_schema to API format
-
validate_response
- Validate response data against schema
-
schema_object()
- Create JSON Schema object definitions
-
schema_string()
- Create string property schema
-
schema_number()
- Create numeric property schema
-
schema_integer()
- Create integer property schema
-
schema_boolean()
- Create boolean property schema
-
schema_enum()
- Create enumerated property schema
-
schema_array()
- Create array property schema
-
safely_perform_request()
- Safely perform an embedding request with error handling
-
chunk_dataframe()
- Split a data frame into chunks for batch processing
-
perform_requests_with_strategy()
- Perform multiple requests with configurable concurrency strategy
-
process_response()
- Process API response with error handling
-
hf_perform_request()
- Execute a single embedding request and process the response
-
validate_hf_endpoint()
- Validate that a Hugging Face Inference Endpoint is available
-
base_request()
- Create a base HTTP POST request for API endpoints
-
batch_concurrent_benchmark
- Batch concurrent benchmark results
-
sentiment_classification_example
- Single sentiment classification result example
-
df_sentiment_classification_example
- Example sentiment classification results from Hugging Face API
-
single_embedding_hf
- Single embedding result example from Hugging Face API
-
df_embeddings_hf
- Example embedding results from Hugging Face API