Package index
-
set_api_key() - Set your API keys so they can be accessed by EndpointR
-
get_api_key() - Retrieve an API key which has been stored as an Environment Variable.
Hugging Face - Text Embeddings
Functions for generating text embeddings using Hugging Face endpoints
-
hf_embed_text() - Generate embeddings for a single text
-
hf_embed_batch() - Generate batches of embeddings for a list of texts
-
hf_embed_chunks() - Embed text chunks through Hugging Face Inference Embedding Endpoints
-
hf_embed_df() - Generate embeddings for texts in a data frame
-
tidy_embedding_response() - Process embedding API response into a tidy format
-
hf_classify_text() - Classify text using a Hugging Face Inference API endpoint
-
hf_classify_batch() - Classify multiple texts using Hugging Face Inference Endpoints
-
hf_classify_chunks() - Efficiently classify vectors of text in chunks
-
hf_classify_df() - Classify a data frame of texts using Hugging Face Inference Endpoints
-
tidy_classification_response() - Convert Hugging Face classification response to tidy format
Hugging Face - Core Infrastructure
Low-level functions for building and performing Hugging Face requests
-
hf_build_request() - Prepare a single text embedding request
-
hf_build_request_batch() - Prepare a batch request for multiple texts
-
hf_build_request_df() - Prepare embedding requests for texts in a data frame
-
hf_perform_request() - Execute a single embedding request and process the response
-
hf_get_endpoint_info() - Retrieve information about an endpoint
-
hf_get_model_max_length() - Check the max number of tokens allowed for your inputs
-
ant_build_messages_request() - Build an Anthropic Messages API request
-
ant_complete_text() - Generate a completion for a single text using Anthropic's Messages API
-
ant_complete_chunks() - Process text chunks through Anthropic's Messages API with batch file output
-
ant_complete_df() - Process a data frame through Anthropic's Messages API
-
oai_build_completions_request() - Build an OpenAI API Chat Completions request
-
oai_build_completions_request_list() - Build OpenAI requests for batch processing
-
oai_complete_text() - Generate a completion for a single text using OpenAI's Chat Completions API
-
oai_complete_chunks() - Process text chunks through OpenAI's Chat Completions API with batch file output
-
oai_complete_df() - Process a data frame through OpenAI's Chat Completions API with chunked processing
-
oai_build_embedding_request() - Build OpenAI embedding API request
-
oai_embed_text() - Generate embeddings for a single text using OpenAI
-
oai_embed_batch() - Generate embeddings for multiple texts using OpenAI
-
oai_embed_chunks() - Embed text chunks through OpenAI's Embeddings API
-
oai_embed_df() - Generate embeddings for texts in a data frame using OpenAI
-
tidy_oai_embedding() - Process OpenAI embedding API response into a tidy format
JSON Schema for Structured Outputs
Type-safe schema creation and validation for structured LLM outputs
-
create_json_schema() - Create a JSON Schema object
-
json_schema() - Create JSON Schema S7 class for structured outputs
-
json_dump - Convert json_schema to API format
-
validate_response - Validate response data against schema
-
schema_object() - Create JSON Schema object definitions
-
schema_string() - Create string property schema
-
schema_number() - Create numeric property schema
-
schema_integer() - Create integer property schema
-
schema_boolean() - Create boolean property schema
-
schema_enum() - Create enumerated property schema
-
schema_array() - Create array property schema
-
safely_perform_request() - Safely perform an embedding request with error handling
-
chunk_dataframe() - Split a data frame into chunks for batch processing
-
perform_requests_with_strategy() - Perform multiple requests with configurable concurrency strategy
-
process_response() - Process API response with error handling
-
hf_perform_request() - Execute a single embedding request and process the response
-
validate_hf_endpoint() - Validate that a Hugging Face Inference Endpoint is available
-
base_request() - Create a base HTTP POST request for API endpoints
-
safely_from_json() - Safely extract JSON
-
batch_concurrent_benchmark - Batch concurrent benchmark results
-
sentiment_classification_example - Single sentiment classification result example
-
df_sentiment_classification_example - Example sentiment classification results from Hugging Face API
-
single_embedding_hf - Single embedding result example from Hugging Face API
-
df_embeddings_hf - Example embedding results from Hugging Face API