Create an embedding model using a model available from the Spacy Library
Source:R/embed.R
bt_make_embedder_spacy.Rd
Create an embedding model using a model available from the Spacy Library
Arguments
- model
The pipeline used to make predictions
- ...
additional arguments to be sent to the spacy.load function
- prefer_gpu
if TRUE use gpu if available
- exclude
name of pipeline components to exclude
Value
an embedding model, formed according to the model defined, that can be input to be_do_embedding to create document embeddings
Examples
# \donttest{
# specify a non-transformer model, excluding features not required
embedder <- bt_make_embedder_spacy(model = "en_core_web_md", exclude = c("tagger", "parser", "ner", "attribute_ruler", "lemmatizer"))
#> spacy is not in installed packages of current environment, run reticulate::py_install("spacy").
#> Error in py_module_import(module, convert = convert): ModuleNotFoundError: No module named 'spacy'
#> Run `reticulate::py_last_error()` for details.
# specify a transformer model and exclude features not required
embedder <- bt_make_embedder_spacy(model = "en_core_web_trf", exclude = c("tagger", "parser", "ner", "attribute_ruler", "lemmatizer"))
#> spacy is not in installed packages of current environment, run reticulate::py_install("spacy").
#> Error in py_module_import(module, convert = convert): ModuleNotFoundError: No module named 'spacy'
#> Run `reticulate::py_last_error()` for details.
# }